Possible lengths for vex right triangles

I’m sure most of you know that it is very hard to create right triangles with vex parts. To find them normally you can use the equation a^2 + b^2 = c^2 but sometimes you can get the triangle to if the equation is just a little bit off. For example 7^2 + 11^2 = 13^2 can be simplified to 170 = 169. While that equation is not true, the tolerance in vex parts allow for this combination to work. The following is a list of all the combinations that are within 1/20th of an inch (1/10th of a vex square) of working perfectly with the equation a^2 + b^2 = c^2.

Note: The first two columns show the two legs of the right triangle. The third column shows the hypotenuse of the triangle. The last number shows the error or how far off from the equation is the combination. Also all the numbers are measured in vex squares (0.5 in).

2	20	20	error: 0.09975
2	21	21	error: 0.09502
2	22	22	error: 0.09072
2	23	23	error: 0.08679
2	24	24	error: 0.08319
2	25	25	error: 0.07987
2	26	26	error: 0.07681
2	27	27	error: 0.07397
2	28	28	error: 0.07134
2	29	29	error: 0.06888
2	30	30	error: 0.06659
2	31	31	error: 0.06445
2	32	32	error: 0.06244
2	33	33	error: 0.06055
2	34	34	error: 0.05877
2	35	35	error: 0.0571
3	4	5	error: 0.0
4	7	8	error: 0.06226
4	8	8	error: 0.05573
5	5	7	error: 0.07107
5	11	12	error: 0.08305
5	12	13	error: 0.0
5	13	13	error: 0.07161
6	8	10	error: 0.0
6	16	17	error: 0.08801
6	17	18	error: 0.02776
6	18	18	error: 0.02633
6	19	19	error: 0.07514
7	11	13	error: 0.0384
7	22	23	error: 0.08679
7	23	24	error: 0.04163
7	24	25	error: 0.0
7	25	25	error: 0.03849
7	26	26	error: 0.07418
8	9	12	error: 0.04159
8	15	17	error: 0.0
8	29	30	error: 0.08322
8	30	31	error: 0.04835
8	31	32	error: 0.01562
8	32	32	error: 0.01515
8	33	33	error: 0.04415
8	34	34	error: 0.0715
8	35	35	error: 0.09735
9	12	15	error: 0.0
9	19	21	error: 0.0238
9	20	21	error: 0.06829
10	15	18	error: 0.02776
10	23	25	error: 0.07987
10	24	26	error: 0.0
10	25	26	error: 0.07418
11	13	17	error: 0.02939
11	18	21	error: 0.09502
11	19	21	error: 0.0455
11	28	30	error: 0.08322
11	29	31	error: 0.01612
11	30	31	error: 0.04691
12	12	16	error: 0.02944
12	16	20	error: 0.0
12	22	25	error: 0.05993
12	23	25	error: 0.05776
12	34	36	error: 0.05551
12	35	37	error: 0.0
13	19	23	error: 0.02173
13	26	29	error: 0.06888
13	27	29	error: 0.03335
14	17	22	error: 0.02272
14	22	26	error: 0.07681
14	23	26	error: 0.07418
14	31	34	error: 0.0147
14	32	34	error: 0.0715
15	16	21	error: 0.06829
15	20	25	error: 0.0
15	26	30	error: 0.01666
15	35	38	error: 0.07887
16	18	24	error: 0.08319
16	23	28	error: 0.01785
16	30	34	error: 0.0
17	17	24	error: 0.04163
17	21	27	error: 0.01851
17	26	31	error: 0.06445
17	27	31	error: 0.09389
17	34	38	error: 0.01316
17	35	38	error: 0.08985
18	20	26	error: 0.09275
18	24	30	error: 0.0
18	30	34	error: 0.01429
19	22	29	error: 0.06888
19	27	33	error: 0.01515
19	33	38	error: 0.07887
19	34	38	error: 0.05132
20	21	29	error: 0.0
20	25	32	error: 0.01562
20	30	36	error: 0.05551
21	28	35	error: 0.0
21	34	39	error: 0.03752
22	26	34	error: 0.05877
22	31	38	error: 0.01316
23	25	33	error: 0.02942
23	29	37	error: 0.01351
23	34	41	error: 0.04875
24	24	33	error: 0.05887
24	32	40	error: 0.0
25	26	36	error: 0.06938
25	30	39	error: 0.05125
25	35	43	error: 0.01163
26	29	38	error: 0.05132
26	33	42	error: 0.0119
28	30	41	error: 0.03657
28	34	44	error: 0.04543
29	29	41	error: 0.01219
29	33	43	error: 0.06823
30	35	46	error: 0.09772
31	34	46	error: 0.01087
32	33	45	error: 0.03262
34	34	48	error: 0.08326

To find these numbers I used java to find this. Here is my code.

Thank you for posting this. I’m sure that it will be very helpful to many teams.