Good questions here. The exact .csv file we used to train the robot for Spin Up can be found in the Copilot github page under data/robot_data.csv. It was a combination of readings taken from motor encoders and laser distance sensors, slimmed down to the minimum number of inputs for an effective result.
I guess moderators can get mad at me for posting this huge chunk of code, but unfortunately, I can’t upload the python file itself, so here goes the simulation code, in its entirety, copied and pasted
import turtle
import math
import pandas
import numpy
import random
global log, count, pixels, values_list, movement_list, movement_count, finished
finished = False
log = True
count = 0
pixels = 0
movement_count = 0
movement_list = [0,0,0,0,0]
values_list = [0,0,9999,9999,9999,0]
screen = turtle.Screen()
screen.bgpic('field.gif')
screen.tracer(0,20)
opponent = turtle.Turtle(shape='square', visible=True)
opponent.color('red')
opponent.shapesize(1.2, 1.3, 1)
opponent.pu()
k = turtle.Turtle(shape='square', visible=True)
k.color('blue')
k.shapesize(1.4, 1.4, 1)
k.pu()
k.goto(-90, 60)
k.pd()
def run_auton(auton_num):
global movement_list, finished
finished = False
if auton_num == 0:
#Jugglenauts
opponent.goto(-20, 90)
opponent.seth(245)
opponent.pd()
movement_list = [2,2,2,2,2,2,2,2,2,2,0,0,0,0,0,-2,-2,-2,-2,-2,45,2,2,2,2,2,2,2,2,2,2,-45,0,0,0,0,0,-20,-2,-2,-2,-2,-2,2,2,2,2,2,20,0,0,0,0,0]
elif auton_num == 1:
#Speed of light
opponent.goto(-20, 90)
opponent.seth(180)
opponent.pd()
movement_list = [2,2,2,2,2,2,2,2,2,2,90,2,2,2,2,2,0,0,0,0,0,-2,-2,-2,-2,-2,135,2,2,2,2,-90,0,0,0,0,0,90,2,2,2,2,2-90,0,0,0,0,0]
elif auton_num == 2:
# Gears
opponent.goto(-15,85)
opponent.seth(270)
opponent.pd()
movement_list = [2,2,2,2,2,-150,0,0,0,0,0,0,135,2,2,2,2,2,2,-2,-2,-135,0,0,0,0,0,135,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,0,0,0,0,0]
def print_coords(x,y):
x_coord = x
y_coord = y
print(x_coord, y_coord)
def full_forward():
global log, count, pixels, values_list, movement_list, movement_count, finished
LSD = 9999
MSD = 9999
BSD = 9999
k.fd(2)
screen.update()
pixels += 2
count += 20
lsd_points = [(round(k.xcor() + 9*math.sqrt(2)*0.564705882352941 + a), round(k.ycor() + a)) for a in range(0,225)]
msd_points = [(round(k.xcor() + a), round(k.ycor() + a)) for a in range(0,225)]
bsd_points = [(round(k.xcor() + a), round(k.ycor() + 9*math.sqrt(2)*0.564705882352941 + a)) for a in range(0,225)]
accepted_points = [(round(opponent.xcor() + 8*1.5625), round(opponent.ycor() + a)) for a in range(round(-8*1.5625), round(8*1.5625))]
for x in range (0, 9):
for c in [(round(opponent.xcor() + x*1.5625), round(opponent.ycor() + a)) for a in range(round(-8*1.5625), round(8*1.5625))]:
accepted_points.append(c)
for i in range (0, 9):
for b in [(round(opponent.xcor() + a), round(opponent.ycor() + i*1.5625)) for a in range(round(-8*1.5625), round(8*1.5625))]:
accepted_points.append(b)
for x in accepted_points:
if x in lsd_points:
LSD = round(16.255999479808015 * k.distance(opponent)) + random.randint(-200, 200)
if x in msd_points:
MSD = round(16.255999479808015 * k.distance(opponent)) + random.randint(-200, 200)
count = 0
if x in bsd_points:
BSD = round(16.255999479808015 * k.distance(opponent)) + random.randint(-200, 200)
if log:
values_list[0] = 4
values_list[1] = pixels * 0.030557749073644
values_list[2] = LSD
values_list[3] = MSD
values_list[4] = BSD
values_list[5] = count
if movement_count == len(movement_list) - 1:
finished = True
movement_count = 0
else:
if abs(movement_list[movement_count]) > 2:
opponent.rt(movement_list[movement_count])
else:
opponent.fd(movement_list[movement_count])
movement_count += 1
if finished:
k.goto(-80,60)
run_auton(random.randint(0,2))
accepted_points.clear()
print(values_list)
def full_backward():
global log, count, pixels, values_list, movement_list, movement_count, finished
LSD = 9999
MSD = 9999
BSD = 9999
k.back(2)
screen.update()
pixels -= 2
count += 20
lsd_points = [(round(k.xcor() + 9*math.sqrt(2)*0.564705882352941 + a), round(k.ycor() + a)) for a in range(0,225)]
msd_points = [(round(k.xcor() + a), round(k.ycor() + a)) for a in range(0,225)]
bsd_points = [(round(k.xcor() + a), round(k.ycor() + 9*math.sqrt(2)*0.564705882352941 + a)) for a in range(0,225)]
accepted_points = [(round(opponent.xcor() + 8*1.5625), round(opponent.ycor() + a)) for a in range(round(-8*1.5625), round(8*1.5625))]
for x in range (0, 9):
for c in [(round(opponent.xcor() + x*1.5625), round(opponent.ycor() + a)) for a in range(round(-8*1.5625), round(8*1.5625))]:
accepted_points.append(c)
for i in range (0, 9):
for b in [(round(opponent.xcor() + a), round(opponent.ycor() + i*1.5625)) for a in range(round(-8*1.5625), round(8*1.5625))]:
accepted_points.append(b)
for x in accepted_points:
if x in lsd_points:
LSD = round(16.255999479808015 * k.distance(opponent)) + random.randint(-200, 200)
if x in msd_points:
MSD = round(16.255999479808015 * k.distance(opponent)) + random.randint(-200, 200)
count = 0
if x in bsd_points:
BSD = round(16.255999479808015 * k.distance(opponent)) + random.randint(-200, 200)
if log:
values_list[0] = 0
values_list[1] = pixels * 0.030557749073644
values_list[2] = LSD
values_list[3] = MSD
values_list[4] = BSD
values_list[5] = count
if movement_count == len(movement_list) - 1:
finished = True
movement_count = 0
else:
if abs(movement_list[movement_count]) > 2:
opponent.rt(movement_list[movement_count])
else:
opponent.fd(movement_list[movement_count])
movement_count += 1
if finished:
k.goto(-80,60)
run_auton(random.randint(0,2))
accepted_points.clear()
print(values_list)
def half_forward():
global log, count, pixels, values_list, movement_list, movement_count, finished
LSD = 9999
MSD = 9999
BSD = 9999
k.fd(1)
screen.update()
pixels += 1
count += 20
lsd_points = [(round(k.xcor() + 9*math.sqrt(2)*0.564705882352941 + a), round(k.ycor() + a)) for a in range(0,225)]
msd_points = [(round(k.xcor() + a), round(k.ycor() + a)) for a in range(0,225)]
bsd_points = [(round(k.xcor() + a), round(k.ycor() + 9*math.sqrt(2)*0.564705882352941 + a)) for a in range(0,225)]
accepted_points = [(round(opponent.xcor() + 8*1.5625), round(opponent.ycor() + a)) for a in range(round(-8*1.5625), round(8*1.5625))]
for x in range (0, 9):
for c in [(round(opponent.xcor() + x*1.5625), round(opponent.ycor() + a)) for a in range(round(-8*1.5625), round(8*1.5625))]:
accepted_points.append(c)
for i in range (0, 9):
for b in [(round(opponent.xcor() + a), round(opponent.ycor() + i*1.5625)) for a in range(round(-8*1.5625), round(8*1.5625))]:
accepted_points.append(b)
for x in accepted_points:
if x in lsd_points:
LSD = round(16.255999479808015 * k.distance(opponent)) + random.randint(-200, 200)
if x in msd_points:
MSD = round(16.255999479808015 * k.distance(opponent)) + random.randint(-200, 200)
count = 0
if x in bsd_points:
BSD = round(16.255999479808015 * k.distance(opponent)) + random.randint(-200, 200)
if log:
values_list[0] = 3
values_list[1] = pixels * 0.030557749073644
values_list[2] = LSD
values_list[3] = MSD
values_list[4] = BSD
values_list[5] = count
if movement_count == len(movement_list) - 1:
finished = True
movement_count = 0
else:
if abs(movement_list[movement_count]) > 2:
opponent.rt(movement_list[movement_count])
else:
opponent.fd(movement_list[movement_count])
movement_count += 1
if finished:
k.goto(-80,60)
run_auton(random.randint(0,2))
accepted_points.clear()
print(values_list)
def half_back():
global log, count, pixels, values_list, movement_list, movement_count, finished
LSD = 9999
MSD = 9999
BSD = 9999
k.back(1)
screen.update()
pixels -= 1
count += 20
lsd_points = [(round(k.xcor() + 9*math.sqrt(2)*0.564705882352941 + a), round(k.ycor() + a)) for a in range(0,225)]
msd_points = [(round(k.xcor() + a), round(k.ycor() + a)) for a in range(0,225)]
bsd_points = [(round(k.xcor() + a), round(k.ycor() + 9*math.sqrt(2)*0.564705882352941 + a)) for a in range(0,225)]
accepted_points = [(round(opponent.xcor() + 8*1.5625), round(opponent.ycor() + a)) for a in range(round(-8*1.5625), round(8*1.5625))]
for x in range (0, 9):
for c in [(round(opponent.xcor() + x*1.5625), round(opponent.ycor() + a)) for a in range(round(-8*1.5625), round(8*1.5625))]:
accepted_points.append(c)
for i in range (0, 9):
for b in [(round(opponent.xcor() + a), round(opponent.ycor() + i*1.5625)) for a in range(round(-8*1.5625), round(8*1.5625))]:
accepted_points.append(b)
for x in accepted_points:
if x in lsd_points:
LSD = round(16.255999479808015 * k.distance(opponent)) + random.randint(-100, 100)
if x in msd_points:
MSD = round(16.255999479808015 * k.distance(opponent)) + random.randint(-100, 100)
count = 0
if x in bsd_points:
BSD = round(16.255999479808015 * k.distance(opponent)) + random.randint(-100, 100)
if log:
values_list[0] = 1
values_list[1] = pixels * 0.030557749073644
values_list[2] = LSD
values_list[3] = MSD
values_list[4] = BSD
values_list[5] = count
if movement_count == len(movement_list) - 1:
finished = True
movement_count = 0
else:
if abs(movement_list[movement_count]) > 2:
opponent.rt(movement_list[movement_count])
else:
opponent.fd(movement_list[movement_count])
movement_count += 1
if finished:
k.goto(-80,60)
run_auton(random.randint(0,2))
accepted_points.clear()
print(values_list)
def stay():
global log, count, pixels, values_list, movement_list, movement_count, finished
LSD = 9999
MSD = 9999
BSD = 9999
screen.update()
count += 20
lsd_points = [(round(k.xcor() + 9*math.sqrt(2)*0.564705882352941 + a), round(k.ycor() + a)) for a in range(0,225)]
msd_points = [(round(k.xcor() + a), round(k.ycor() + a)) for a in range(0,225)]
bsd_points = [(round(k.xcor() + a), round(k.ycor() + 9*math.sqrt(2)*0.564705882352941 + a)) for a in range(0,225)]
accepted_points = [(round(opponent.xcor() + 8*1.5625), round(opponent.ycor() + a)) for a in range(round(-8*1.5625), round(8*1.5625))]
for x in range (0, 9):
for c in [(round(opponent.xcor() + x*1.5625), round(opponent.ycor() + a)) for a in range(round(-8*1.5625), round(8*1.5625))]:
accepted_points.append(c)
for i in range (0, 9):
for b in [(round(opponent.xcor() + a), round(opponent.ycor() + i*1.5625)) for a in range(round(-8*1.5625), round(8*1.5625))]:
accepted_points.append(b)
for x in accepted_points:
if x in lsd_points:
LSD = round(16.255999479808015 * k.distance(opponent)) + random.randint(-100, 100)
if x in msd_points:
MSD = round(16.255999479808015 * k.distance(opponent)) + random.randint(-100, 100)
count = 0
if x in bsd_points:
BSD = round(16.255999479808015 * k.distance(opponent)) + random.randint(-100, 100)
if log:
values_list[0] = 2
values_list[1] = pixels * 0.030557749073644
values_list[2] = LSD
values_list[3] = MSD
values_list[4] = BSD
values_list[5] = count
if movement_count == len(movement_list) - 1:
finished = True
movement_count = 0
else:
if abs(movement_list[movement_count]) > 2:
opponent.rt(movement_list[movement_count])
else:
opponent.fd(movement_list[movement_count])
movement_count += 1
if finished:
k.goto(-80,60)
run_auton(random.randint(0,2))
accepted_points.clear()
print(values_list)
def auton_block(x,y):
run_auton(random.randint(0,2))
k.fd(10)
k.rt(45)
screen.update()
screen.onkeypress(full_forward, 'w')
screen.onkeypress(full_backward, 's')
screen.onkeypress(half_forward, 'i')
screen.onkeypress(half_back, 'k')
screen.onkeypress(stay, ' ')
screen.listen()
screen.update()
screen.onclick(auton_block)
screen.mainloop()
As you can see, a janky mess. I am struggling to even recall what most of it means. I guess the lesson is use comments, friends.
And lastly, maybe it did impact the training not having a real robot to compare to, but this whole thing was put together in the 3-ish weeks between our State competition and Worlds, so all we cared about was getting it working. The whole point was to try to position the robot directly in front of an opponent, so the shell sufficed. I’d say it had about a 60% success rate at Worlds, which is way better than 0, and we didn’t lose any offensive firepower because our robot was defensively built for gameplay and had a very low scoring ability. Overall, it just made sense for us, even if it wasn’t the best it could be.