

An Introduction to
PID Controllers
Written by George Gillard

Published: 22-July-2017

Page 2 Published: 22-July-2017 George Gillard

Introduction
A PID Controller, if created and tuned well, is a powerful tool in programming for

incredibly efficient and accurate movements. There are three key components

behind the PID Controller – Proportional, Integral, and Derivative, from which the

acronym PID originates from. However, you don’t strictly need to use all three

together – for example, you could create just a P controller, a PI controller, or a PD

controller.

In this guide, we’ll learn about each component, how they work together, and how

to put it all into practice. There will be some pseudocode examples to help out

along the way. PID by nature involves calculus, however don’t be put off if you

haven’t learned calculus yet, as I’ve attempted to design this guide to be easy

enough for anyone to understand.

Sections:
1. Background Information

2. P: Proportional

3. I: Integral

4. D: Derivative

5. Tuning

6. Conclusion

This guide is provided to assist those learning how to program VEX Robots. This is

a free document, but I ask that you ask for my consent before redistributing online.

Please feel free to share a link to the original source. This document, along with

my other guides, are available for free download from http://georgegillard.com.

http://georgegillard.com/

Page 3 Published: 22-July-2017 George Gillard

1. Background Information
Before cracking into the nitty-gritty of a PID controller, a bit of history into the

development provides some useful insight:

It was not until 1922 that PID controllers were first developed using

a theoretical analysis, by Russian American engineer Nicolas

Minorsky for automatic ship steering. Minorsky was designing

automatic steering systems for the US Navy and based his analysis

on observations of a helmsman, noting the helmsman steered the

ship based not only on the current course error, but also on past

error, as well as the current rate of change; this was then given a

mathematical treatment by Minorsky. His goal was stability, not

general control, which simplified the problem significantly. While

proportional control provides stability against small disturbances,

it was insufficient for dealing with a steady disturbance, notably a

stiff gale (due to steady-state error), which required adding the

integral term. Finally, the derivative term was added to improve

stability and control.

Trials were carried out on the USS New Mexico, with the controller

controlling the angular velocity (not angle) of the rudder. PI control

yielded sustained yaw (angular error) of ±2°. Adding the D element

yielded a yaw error of ±1/6°, better than most helmsmen could

achieve.

- Wikipedia

Typical basic programming used on a robot is along the lines of “run at a constant

speed until you reach a certain point and then stop”. In an ideal world, we’d be able

to do this, and stop exactly on the spot. However, in the real world, there are

additional and largely unpredictable factors that will cause our system to

overshoot the “setpoint” (ideal target), such as momentum (influenced by speed

and hence battery voltage) or other external influences.

S
p

e
e

d

Distance

Ideal World

S
p

e
e

d

Distance

Real World

https://en.wikipedia.org/wiki/PID_controller#Origins

Page 4 Published: 22-July-2017 George Gillard

2. P: Proportional
The Proportional component provides the bulk of the power for controlling your

system. The key objective is to give a large amount of power when there is a long

way to go, but only a small amount of power when you’re nearly at your setpoint.

This results in a smooth deceleration through the movement as you approach the

setpoint.

2.1 The Error
Firstly, a variable is created, called the error. The error is really simple – just the

difference between the current sensor value, and what you want that sensor value

to reach (the setpoint). For example, the error could be the distance remaining to

be travelled, the height remaining to be lifted to, etc. If your phone battery was at

30% and you were charging it to reach 100%, the error would be 70% - it’s just the

difference between where you’re at, and where you want to be.

As you’d suspect, to calculate the error, you’d create something as simple as this:

error = setpoint – sensor value

To solidify the understanding of the error, have a look at the following table. The

goal is for a robot to drive a total of 1000 units:

Target value (setpoint) Current sensor reading Error

1000 0 1000
1000 200 800

1000 400 600
1000 600 400
1000 800 200

1000 1000 0

Similarly, if the robot then overshot the setpoint, the error would begin to become

negative (indicating the robot now needs to go in reverse):

Target value (setpoint) Current sensor reading Error
1000 600 400
1000 800 200

1000 1000 0
1000 1200 -200

1000 1400 -400

Page 5 Published: 22-July-2017 George Gillard

2.2 Assigning an Output Power
To achieve the nice smooth deceleration that the Proportional Controller

provides, we could simply set the power of our motors to be equal to the error, like

so:

error = setpoint – sensor value

speed = error

However, you may find that the speed values don’t seem to be scaled right. The

robot may be a bit too gentle approaching the target, and may in fact not have

enough power at all to reach the setpoint when the error becomes small. Or

alternatively, the robot might be a bit aggressive, and it might significantly

overshoot, and then overcorrect, in a never-ending cycle.

To combat this issue, we introduce another value, the proportional constant (kP).

Simply put, we multiply the error by kP when we assign the error to the output

power. Later we’ll tune this value to get the desired output, but for now here’s how

we’d implement it:

error = setpoint – sensor value

speed = error*kP

Up until now, we’ve skipped over a fairly critical part of the PID (or P, so far)

controller. Currently, we could run the code and it would perform the calculations

once. However, we’d obviously need to keep recalculating these values as our

robot moves, otherwise our error and speeds will never update. To fix this, we put

everything in a loop.

Here’s some slightly more realistic pseudocode, which with some completion

would work absolutely fine for many situations:

void myPID(int setpoint)

{

 while (some condition)

 {

 error = setpoint – sensor value;

 speed = error*kP;

 }

}

Page 6 Published: 22-July-2017 George Gillard

3. I: Integral
You may recall from the short bit if history covered in the introduction that the

proportional term was determined to be sufficient for small disturbances, but not

much else. The integral term is going to give us some versatility when it comes to

other disturbances (e.g. a “stiff gale” was a problem in the case of the automatic

ship steering). You’ll also find with the proportional component that once the

error becomes small you have very little power, and might see some significant

remaining error that just isn’t eliminated – the integral will get rid of this for you

by slowly increasing the speed. The integral is going to be concerned with looking

back in time over all the errors your system has calculated. By definition, an

integral is an area under a curve in calculus. For our purposes, calculating the

integral using standard calculus isn’t really feasible, so we do it the easy way.

We’re going to work out the total area by summing the area of many thin slices.

3.1 The Maths
The example below shows a curve with the area estimated using rectangular slices

– much like what we’re going to do with our code. Each slice is as tall as the error,

and has a constant width we’re going to call “dT”. As we can see, it isn’t perfect,

but gives a decent estimation of the area. A smaller value for dT (thinner slices)

gives us a more accurate estimation of the area.

The “area under the curve” for each cycle of our loop is going to be the current

error, multiplied by the time it takes for that cycle of the loop. It’s a rough

approximation, but it works fine for us with such slim slices of time.

area = error * dT

The integral is equal to the sum of all of these areas. At any instant, it is the sum of

the areas of all the previous cycles, so we create a variable (“integral”), and add on

the new slice of area in each cycle of our loop:

integral = integral + error*dT

E
rr

o
r

Time

Page 7 Published: 22-July-2017 George Gillard

Since dT is normally a constant delay that we ourselves set (e.g. wait 15

milliseconds per cycle of the loop), we can factor it out later and hence tend to

ignore its existence. Hence, we’ll use this to calculate our integral:

integral = integral + error

Consider a case where our error is decreasing at a nice constant rate (not realistic),

ignoring dT. The following table describes how the integral would be calculated:

Cycle No. Error Integral
1 1000 1000

2 800 1800
3 600 2400

4 400 2800
5 200 3000

Now, consider what would happen if we had some external influence that caused

our error to reduce more slowly. In the above example it decreased 200 units per

cycle. The next table considers what would happen if that was 100:

Cycle No. Error Integral

1 1000 1000
2 900 1900

3 800 2700
4 700 3400

5 600 4000

As we can see, in the first example our integral was 3000 after 5 cycles. Now, with

a slower deceleration, it’s 4000. This increase in value is our indicator of some

external influence and will help create some more versatile control for our system.

3.2 Assigning an Output Power
A higher value of the integral indicates that there is some external influence

slowing down our system. Hence, to combat this we add some extra power to give

a bit more of a “boost”, and to accomplish this we add the integral to the existing

output. To account for the scaling issues just like we saw for the proportional term,

we introduce another constant – kI. As you can probably tell, our integral is likely

going to be a huge number, thus entirely useless as an output power as-is, so we

often expect kI to be quite small compared to kP, especially in cases where we are

neglecting dT in our equations.

speed = error*kP + integral*kI

Page 8 Published: 22-July-2017 George Gillard

We typically don’t bother with brackets to separate each term because our order

of operations (BEDMAS/BODMAS) takes care of that for us, but feel free to include

them if it makes it easier to read, like so:

speed = (error*kP) + (integral*kI)

Our code so far would now look something like this pseudocode:

void myPID(int setpoint)

{

 while (some condition)

 {

 error = setpoint – sensor value;

 integral = integral + error;

 speed = error*kP + integral*kI;

 wait 15 mSec;

 }

}

The 15 milliseconds wait at the end is really important – this is our dT. Without it,

your integral value will skyrocket to some huge number as numbers get added

together without any break, and 15 milliseconds is quite fast enough for an

accurate integral for most of our purposes. This delay will also prove to be critical

for the derivative term soon, as I’m sure you’ll realise when we reach that section.

If you don’t consider a constant dT, you will need to measure the time per cycle

and consider that in your integral calculation.

3.3 Issues

3.3.1 Problem No. 1:
When the error reaches zero, that is you’ve made it to the setpoint, the integral is

most likely going to be significant enough to keep the output power high enough

to continue. This can be a nuisance in situations where you don’t need any

additional power to hold the position – e.g. if this is for a drive train on a flat surface,

if your wheels continue turning that’s somewhat of an issue!

Page 9 Published: 22-July-2017 George Gillard

In these cases, we can reset the integral to zero once our error passes the setpoint,

like so:

void myPID(int setpoint)

{

 while (some condition)

 {

 error = setpoint – sensor value;

 integral = integral + error;

 if (error = 0 or passes setpoint)

 integral = 0;

 speed = error*kP + integral*kI;

 wait 15 mSec;

 }

}

Note: if this PID controller is for a system that needs a bit of help to hold its position

(e.g. an arm lifting up some weight), you absolutely should not try this. When your

error passes the setpoint, the integral value will gradually be diminished and it will

still settle. This is only suitable for systems that maintain their sensor value with

zero power (e.g. wheels on a flat surface).

3.3.2 Problem No. 2:
Integral windup is an issue where a large change in setpoint occurs (e.g. 0 to 1000),

causing the integral to start calculating for huge error values. This then results in

an unusably high value for the integral when you really want it (i.e. near the

setpoint). There’s a few ways to combat this problem:

Solution #1: Limit the value that the integral can reach.

if (integral is huge)

 integral = maximum value;

Solution #2: Limit the range in which the integral is allowed to build up in (i.e. once

the error is below a certain value, or once the current output speed is less than a

certain value, e.g. 100%).

if (error is big)

 integral = 0;

Page 10 Published: 22-July-2017 George Gillard

Solution #3: Gradually increase the error between it’s previous value (e.g. 0) and

it’s new value (e.g. 1000). This is a little more complicated to code, and a little out

of the scope of this guide, but is still very possible.

For this guide, we’ll use the second solution using the error as a limiting factor, as

it’s a little more useful than the first but still simple to program.

3.4 The New Code
The PI controller we’ve created so far would be something like this:

void myPID(int setpoint)

{

 while (some condition)

 {

 error = setpoint – sensor value;

 integral = integral + error;

 if (error = 0 or passes setpoint)

 integral = 0;

 if (error is outside useful range)

 integral = 0;

 speed = error*kP + integral*kI;

 wait 15 mSec;

 }

}

Page 11 Published: 22-July-2017 George Gillard

4. D: Derivative
So far we’ve looked at controlling the output power based on the current error,

and past errors. Now, we’re going to look a bit into the future. The idea of the

derivative is to look at the rate of change of our error – how fast are we approaching

the setpoint? Do we need to slow down a bit? The contribution from the derivative

will be in the direction opposite to your current direction of travel, with a larger

magnitude for a greater speed. It typically will be outweighed by the proportional

and integral components, but if there’s some deviation from “normal” and the

robot is going faster for some reason, the derivative component will become

larger and your output power will be reduced. Similarly, if your robot is going

slower than normal, the derivative component will be smaller in magnitude and

hence the output power will become greater.

4.1 The Maths
As described above, the derivative is the rate of change. In calculus, this is also the

gradient (slope) of your curve. If your curve is steeper, you will have a bigger

gradient (and thus a larger derivative).

In general, to find the gradient of a curve, you’d do something like this:

𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 =
𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑌

𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑋
=

𝑌2 − 𝑌1

𝑋2 − 𝑋1

For us, our Y axis is our error, and our change in X is dT, so our derivative is:

𝐷𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 =
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑒𝑟𝑟𝑜𝑟 − 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑒𝑟𝑟𝑜𝑟

𝑑𝑇

Just like with the integral, if we treat dT as a constant, we can ignore its effect in

our calculations and merge it in with our constants later on.

E
rr

o
r

Time

Page 12 Published: 22-July-2017 George Gillard

We can use the existing error we have for our “current error”, but for our

“previous error” we need to add in a new variable. All we’ll make this variable do

is keep track of that our error was in the previous cycle.

So, to calculate our error, we’ll use something like this:

derivative = error – prevError;

prevError = error

4.2 Assigning an Output Power
Just like for the Proportional and Integral components, we add a constant (“kD”)

to account for issues with scaling for our derivative. A value that is too high will

cause instability - with the power contribution from the derivative overpowering

the total power momentarily. A value that is too small will cause a derivative

component that may as well not exist.

To incorporate to our existing output power, we add our derivate component onto

the end, like as follows:

speed = error*kP + integral*kI + derivative*kD

Our PID controller now looks something like this:

void myPID(int setpoint)

{

 while (some condition)

 {

 error = setpoint – sensor value;

 integral = integral + error;

 if (error = 0 or passes setpoint)

 integral = 0;

 if (error is outside useful range)

 integral = 0;

 derivative = error – prevError;

 prevError = error;

 speed = error*kP + integral*kI + derivative*kD;

 wait 15 mSec;

 }

}

Page 13 Published: 22-July-2017 George Gillard

5. Tuning
The most time and labour intensive, as well as generally the most frustrating and

tedious part of a PID controller is tuning the constants to make it all work well.

There are different ways of tuning these constants, from using computers to

mathematics and just trial & error. I’m going to discuss the last two options, the

most popular for most educational/competition robots being trial & error. At all

times when tuning, it’s worthwhile keeping an eye on the value of the error or

sensor, instead of just relying on sight to judge what “looks” right.

First of all, we’ll look into some factors that determine the behaviour and

performance of our PID controller in reality:

• Rise time – the time it takes to get from the beginning point to the target

point

• Overshoot – how far beyond the target your system goes when passing the

target

• Settling time – the time it takes to settle back down when encountering a

change

• Steady-state error – the error at the equilibrium, when it’s stopped moving

• Stability – the “smoothness” of the motion

Now, let’s check out how these are effected by an increase in our three constants:

Parameter Rise Time Overshoot
Settling

Time

Steady-State

Error
Stability

kP Decrease

(faster)

Increase

(further)

N/A Decrease

(more precise)

Worsens

kI Decrease
(faster)

Increase
(further)

Increase
(takes longer)

Decrease
(more precise)

Worsens

kD N/A Decrease

(closer)

Decrease

(quicker)

N/A Improves*

- Wikipedia

* If kD is small enough. Too much kD can make it worse! Since the derivative term

acts in the opposite direction to the proportional and integral components, if the

power produced by the derivative term is too great it will outweigh the

proportional and integral components, causing the robot to slow down and

potentially stop when it shouldn’t. When the robot slows down, the derivative

component will weaken and the robot will once again be able to continue, only

until the derivative term becomes strong enough once again to slow the robot

down unnecessarily. The resulting motion looks jumpy, or jittery.

https://en.wikipedia.org/wiki/PID_controller#Manual_tuning

Page 14 Published: 22-July-2017 George Gillard

Note: for the steady-state error, it’s important to remember that reliability is

generally more important than accuracy. By that, if you’re always exactly 10 units

over the target, that’s typically better than having a steady-state error ranging

between -5 to +5, because you can then just predict you’ll be 10 units over and

adjust as appropriate.

5.1 Trial & Error (Manual Tuning)
This method of tuning your PID controller is done entirely by you, with no extra

tools to help you out other than your fundamental knowledge and understanding.

It can be the most repetitive and tedious process, but often considered the

simplest.

First of all, you set all three constants (kP, kI, kD) to zero. This “disables them”.

We’ll tune them one by one, rather than jumping straight in. We generally tune

in the order of Proportional, Derivative, Integral, that is, we tune in the order of kP,

kD and finally kI. This entire process relies on making a prediction for your

constant (“trial”), and then adjusting it when it doesn’t go to plan (“error”). It’s

important to be prepared to stop your robot (both by disabling it from your

program or a switch, and by physically catching it if necessary), as you’ll likely

make a prediction that is far off an appropriate value. So long as you’re ready, there

typically isn’t too much harm in just experimenting.

1. Increase kP until the robot oscillates just slightly, once or twice. We’re

interested in achieving a fast motion to the target here, but not too violent –

it needs to settle, and in a reasonable amount of time!

2. Start adding kD until the steady-state error starts to decrease until

something suitable. This will allow us to maintain the fast motion from the

Proportional component, whilst minimising the overshoot. You may need

to go back to adjusting kP a little.

3. Start adding kI until any minor steady-state error and disturbances are

accounted for. You may need to adjust kD when doing this.

4. Using the knowledge from the table on the previous page, keep adjusting

the constants until you end up with a nice, quick but smooth motion that

you’re happy with.

This can be very frustrating and difficult the first few times, but it gets a lot better

with practice, and you’ll be able to guess fairly accurate values for your constants

with a bit of experience.

Page 15 Published: 22-July-2017 George Gillard

5.2 Mathematical Tuning
Mathematics can be used to provide a decent estimate for your PID constants.

Typically, you’ll need to make some manual adjustments afterwards, but

mathematical models can do a reasonable amount of the bulk of the work for you.

For this, we’ll look at the Ziegler-Nichols method, which also requires a little bit of

manual work at the beginning for the calculations.

Just as for the trial & error method, begin by disabling all three constants (set them

to zero).

1. Increase kP until you get steady continuous oscillations. These need to be

stable and consistent. Record this value as “kU” (ultimate or critical gain).

2. Measure the period of the oscillations caused by step 1. That is, the time it

takes to do a full cycle from a point back to itself. You can measure this with

a bit of programming, or with a stopwatch. It’s a good idea to measure many

oscillations and then divide the time by the number of oscillations to get a

good average. Record this number as “pU” (period for ultimate or critical

gain).

3. Calculate the approximate constant values from the following table,

depending on the type of your controller:

 kP kI kD

P 0.5*kU 0 0

PI 0.45*kU 0.54*kU/pU 0

PD 0.8*kU 0 0.1*kU*pU

PID 0.6*kU 1.2*kU/pU 0.075*kU*pU

- Wikipedia

As previously mentioned, you’ll most likely need to make some adjustments

through trial & error to perfect the motion. The values in the tables above for kI

and kD do not account for any assumption for ignoring dT, so you would need to

accommodate that as well in your calculations.

https://en.wikipedia.org/wiki/Ziegler%E2%80%93Nichols_method

Page 16 Published: 22-July-2017 George Gillard

6. Conclusion
This document covers the basics of creating a PID controller. We’ve looked at all

three components, and how they can help to create a reliable autonomous

movement for your system.

It’s important to note that there are other features you may need to implement to

your code to improve the controller. It’s also important to note that you don’t need

all three components to create a good controller – depending on your situation, a

P, PI, or PD controller might be just as good, if not more appropriate.

Understanding the fundamentals behind how and why a PID controller works will

aid you tremendously with your programming. It is worthwhile searching for

some examples online for various applications to broaden your knowledge.

I hope this guide has helped you, and I wish you the best of luck with your

programming!

