Vex Robotics Beginner Guide

This is a guide for new people to learn basics terms and concepts of robotics (specifically VEX EDR) faster and does not substitute a mentor so feel free to ask questions to learn more advanced information and processes.

- Rule one to robotics there is not such thing as too much stability
- Rule two to robotics it is worth the extra time to make something perfect the first time, it will save you time in the long run

Metal

- Length 2 holes are around 1 inch
 - Ex. 20 hole long piece of metal is around 10 inches, 35 holes around 17.5
- 2 types
 - Aluminum white/gray colored, lighter and weaker
 - Most popular because it's strong enough for most situations
 - Steel cobalt blue colored, heavier but stronger
 - Usually NOT used because Aluminum is usually strong enough
 - Aluminum

• Steel

Plates	 Usually 5 (holes) wide Weak (bendy) so not usually used Used for mounting things such as a cortex 	
1-Bars	 1 (holes) wide Long/thin and extremely lightweight Weak (bendy) so not usually used Used for slight support or small/unique gadgets 	A Constanting

C-Channel	 2, 3, 5 (holes) wides Very strong and sturdy Used primarily for structure Most common There are 1 wide c-channels, but they are usually hand made and are not supported by vex 	5 wide 3 wide 2 wide
Angle	 2 or 1 (holes) wide strong and sturdy (less so than a c-channel) Used primarily for structure C-channels can be cut in half to make 2 angled pieces for a smaller and lighter piece 	
Rails	 2 wide strong and sturdy (less so than a c-channel) Used primarily for structure 	Constant of the second
Linear slides	 Very strong and sturdy Used to translate rotary motion into perfectly linear motion 2 parts - Both parts are the same shape but one is smaller so it can go into the other Unstable at distances greater than 18 inches Generally have a lot of friction Lubricating decreases it (makes it run better) 	

Motion Parts

- Shafts (Axles)
 - High strength (1/4" width) vs regular (0.125" width)
 - Used whenever there rotation is required, screws and sometimes used
 Generally low strength ones are used
- Shaft Hardware

Bearings (motor mounts)	 Attached to metal, 2 screws + 1 axle Reduces friction and allows for smooth rotation, prevents damage Used to connect motors Also called motor mounts Pillow boxes perform the above functions but the hole is 90. to the orientation Lock bars restrict an axle from moving relative to the connected metal 	
Spacers	 Used to fill empty space on an axle Prevents side to side motion White spacers, Nylon (½",¼",¾",½") Black spacers, Plastic (4.6mm, 8mm) Shaft Collar- act as mechanical stops for axles Washers - used for precision spacing White (Teflon), Gray (Streaks eel) 	

- High Strength vs Low Strength (gears and sprockets)
 - Usually use high strength because low strength is too weak for most situations
 - Use low strength for small things requiring weight reduction
- Gears (4 different sizes)
 - Used to transfer rotation throughout a robot
 - Change the speed/torque of a moving part, or the direction of rotation
 - 4 different sizes: 12 tooth (metal), 36, 60, 84 tooth (plastic)
- Sprockets & Chain
 - The teeth of the sprocket connect indirectly with each other by chain
 - Can change speed/torque but everything spin in the same direction
 - o 5 different sizes: 6, 12, 18, 24, 30 tooth (High); 10, 15, 24, 40, 48 tooth (Low)
 - \circ $\;$ Used to connect different parts of motion over long distances
 - Should not be used to link 2 gears that are powered separately
 - Chain can also have tank treads or other accessories attached if needed
- Special gears
 - Consult your mentors for more information

Low Stren.	High Stren.	Special	Low sprock.	High sprock.

- Gear Ratios
 - The Mechanical Advantage (MA) of a gear system
 - How much it amplifies the force
 - Gear Ratios (# of times a 2nd gear spins in relation to the 1st gear)
 - Driving:Driven or Driven/Driving, most often used, ex. 1:1, 1:5, 1:7
 - Can be geared for more speed or Torque
 - Torque More rotational force, less speed (rpm), higher MA
 - Speed More speed (rpm) , less rotational force, lower MA
 - Idle gear all the gears between the driving and driven gear.
 - Only affect direction unless they are in a compound gear system
 - (different sized gears on the same axle, more complicated)
 - Most gearing in robotics is to torque
- Wheels

Omni-Directional Wheel	 Most commonly used wheel type It is a large wheel with smaller wheels going along the outside which allows it to have sideways motion Allows for good turning 	
Mecanum Wheels	 Allows for an x-drive to be built with a regular chassis X-drive - special kind of drive, more maneuverability, less speed Not generally used 	
Random Wheels	 Quite a few types of wheels Could be used if the situation arises, but generally not used 	e)?

- Pneumatics
 - Probably won't use
 - Can be single acting or double acting pistons
 - Consult your mentors for more information

Hardware

8-32 (dia) Screw	 For nuts, standoffs, shaft collars 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1.0, 1.25, 1.5, 1.75, 2.0 inches 	اُلْآر الْآر
6-32 (dia) Screw	 For motors, rack gear attachments 0.25, 0.5 inches 	()
Hex Nut	 Standard nut, not generally used, may be used for prototyping 	
Kep Nut	 Most often used, prototyping or final build Easy to put on, when tightened it grips into the metal with its "teeth" on its bottom Can come loose if not tightened well 	
Nylock nut	 Used a lot as well but hard to put on Requires a wrench to tighten Strong and doesn't come loose Can be used with a screw for a rotating joint 	
Standoffs	 Used to "stand"/attach metal off of each other Good for structure, lightweight Can be combined by couplers (screws with no round top) 8-32 screws 	
Rubber Link	 Can be used to attach standoffs at special angles Not generally used 	
Hinges	 Used to make a joint Usually for things that need to be deployed outside the 18" 	
Gussets	 Various items that help improve structure May not be used if it's inconvenient and the robot is sturdy enough 	* 11 *

Tools

- Allen Keys/Drivers
 - Used to loosen or tighten screws, most Common Screw Head in Vex is Hex
 - 3/32" Keys used for 8-32 screws (larger),
 - 5/64" Keys used for 6-32 screws (smaller), set screws for shaft collars

← Screw Head

- New and may or may not be used
- \circ $\,$ Screws are the exact same except for the head
- \circ 8-32 screws with T15 sized keys

• \leftarrow Screwdriver bit

 \circ 6-32 screws with T8 sized keys

Wrench

• Used to rotate nuts and standoffs

• Larger side for nuts \rightarrow

- ← smaller side for standoffs
- Used to rotate nuts or keep them still; the long length allows for high torque making it perfect for tightening it really well

C

Safety Glasses - Wear These when using power tools or a hacksaw, don't be dumb

- Power Tools
 - Not for use by new and untrained members (get PERMISSION before use)
 - Rotary tool/portable drill/dremel Used to cut or sand things in particular metal
 - Angle Grinder- it's like a dremel, but bigger, shaped different.
 - Drill press- Used for drilling
 - Grinder- Used for grinding
 - Sander- Used for sanding
- Other Common Tools
 - Pliers used to grab and hold onto things, pull things apart
 - Scissors/Zip-Tie cutters cuts string, zip times, wires if need be, and other things
 - File/Sandpaper used to smooth items out or decrease length by a tiny amount
 - Hacksaw Don't use without permission. Use for cutting metal precisely

Electronics

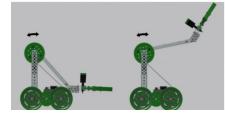
- The parts that tell the robot to run
- There parts with are before the v5, some may still be usable with "legacy" ports

- There parts with are before the vo, some may still be usable with legacy ports			
Cortex	 The brain of the robot 10 motor ports 8 analog and 12 digital sensor ports 3 I2C ports Code is downloaded and stored on this 		
Joystick & VexNets	 Used to control the robot manually Requires 6 AAA batteries 2 joysticks, 8 top buttons, 4 back buttons Can be connected to the robot with a usb-usb cable or wirelessly via vexNets Need two vexNets Can be connected to another special joystick for dual control with a cable 		
Motor Controller	 Used to connect motors it ports 2-9 Convert the motor wire from 2 to 3 pins Helps control the motor Ports 1 and 10 don't require one 		
Wires / Y-Splits	 Act as an extension of the wire 2 pin extenders connect before the motor controller (very rare) 3 pin extenders connect to sensors and after a motor controller Y-Cables allow for 2 motors to be connected into one motor (3 pins) 		
Motors (393) /Servos	 The primary source of motion on your robot. You can either use 12 motors OR 10 motors and pneumatics Servos are mini motors with a limited range of rotation, not generally used Can be geared most Torque, speed, and turbo Torque - most force, slowest Speed - medium Turbo - fastests but less force 		
LCD Display	 Has an interactive display that can be programmed (3 buttons) Used to display information or select auton Uses a 4 pin Y-cable Plugs into the I2C ports 	J. J	

Batteries	 Main (blue) batteries charge everything 2000 mAh (bottom) almost never used 3000 mAh (top) most used Can run on safe and fast charge Never charge on fast for long periods of time Should be charged upt to 8.5Vs Power expander can be added to spread out the load of motors onto two batteries Expander contains 4 motor ports Backup Battery - required at competitions Keeps the cortex/VexNets alive if the main battery dies
-----------	--

- Sensors

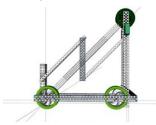
0013013		
Limit Switches and Bumper Switch	 Act as buttons, both digital sensors Give a value of 1 (pressed) and 0 (released) The limit switch (right) is more fragile and sensitive 	T
Ultrasonic	 Uses echolocation to determine a distance From 1.5" to 115", analog sensor 	
Quaniture encoders	 Detects the amount of rotation unlimited range, digital sensor 90 "ticks" for one revolution (360°) 	
Potentiometers	 Detects the amount of rotation, analog Only 250 degrees of range 4095 "points" that the sensor can read Common among lifts 	Roo

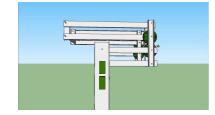

Programming

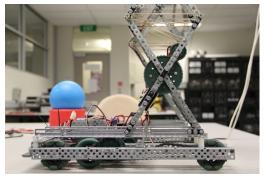
- Vex Robotics Beginner Guide Programming

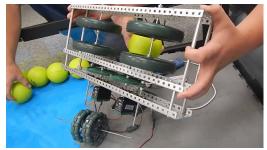
Lifts/Devices

_


- Arm
- Most Basic Lift


- Four bar lift
 - Similar to the arm lift except it contains more arms/bars
 - The configuration of the joints allow the gadget at the end to keep its original angle instead of changing with the arm


- Six bar lift
 - Similar to the 4 bar except it has 6 bars in this configuration
 - It goes higher than a 4 bar
 - Theoretically it can go to infinity with even numbers (ex. 8 bar), but people usually stop at 6 because of materials and the number of joints


- Double reverse four bar (dr4b)
 - Two 4 bars that are connected with a large gear
 - Tall but may be unstable, require a lot of materials to build
 - Theoretically can use an number bar (ex. Double reverse 6 bar) or have infinity bars (triple, quadruple, etc.)

- Scissor lift
 - Really tall and hard to build
 - Slow and unstable, can easily bend the metal structure
 - Not usually used

- Flywheel
 - Used to shoot objects
 - Require high gear ratios

