
 

 

 

 

 

 

 

 

Optimizing a 4-bar Lift 
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What is a 4-bar? 

 Throughout my time in 

competitive robotics, I have been 

introduced to many types of lifts and 

linkages. One of the most common lifts 

and linkages we see is a parallel 4-bar. 

This is a lift with 2 sets of parallel arms – 

the name is given due to the resemblance 

of the 4-sides of a parallelogram. On the right, you can see the prototype of a lift being made with a 

single 4-bar on each side. By nature a 4-bar is one of the quickest, easiest, and lightest lifts available. 

Due to the nature of it’s design, it is incredibly simple to implement regularly, but is incredibly difficult to 

optimize. This is not only because robots need to start within an 18x18x18” starting block, but also 

because arms are limited to a maximum length of around 18”. To maximize the height gained from a lift, 

mounting positions need to be carefully considered. In this investigation, I’m going to attempt to 

optimize the mounting distance of the arms, that is, how far apart they are vertically, assuming the lift is 

similar to the one shown in Fig. 1 above. First, however, I should explain my system and naming 

conventions.  

Figure 1 



Defining The System 

 

Figure 2 

 For my investigation, I will be using the system seen in Fig. 1, where Q is the total height from 

the ground up to the center of the upper axle. This is usually equal to the height of the tower, however, 

other circumstances may prevent this. For the sake of my investigation, I will assume that the axles are 

points and that the lift exists solely in a two-dimensional plane – this is because the third dimension and 

size of the axles is irrelevant to our investigation. B is the vertical distance between the two axles, and L 

is the length of the arms (the two arms have to be the same length). C’ and C are the “same” points, 

there is the distinction of a prime so that the difference between the upper half of motion and lower 

half of motion can be discerned. Likewise, D’ and D are the exact same point – D’ denoting the lower 

position of the point. 

 Now, having described my naming conventions, I can explain why a lift needs optimizing. In an 

ideal world, the point A and B would be as close together as they could, resulting in a B value almost at 

0. However, in real life, bars not only have a length, but also a width of around 1”. In reality, holes would 



need to be tapped into the bar, however, I have chosen to write produce and develop this equation for 

ONLY the arm lengths from center to center of the axle holes as I feel this will be more useful in the 

future – it is quite simple to calculate the different axle sizes and spacing, and the arm lengths for this 

equation can easily be adjusted for the different spacing that axles would need. Creating a formula for a 

single specific spacing makes no sense. 

 Now – if we were to take the bars 

themselves as the lines AD/BC/AD’/BC’, then each 

arm would need 0.5” of buffer space around it to 

prevent collisions with the other arm (arms 

themselves are 1” in this case). This means that the 

ideal scenario of having a near-0 B value is not 

physically possible. However, if you lower point 

B, the arm BC’ start to become limited by the ground, as is illustrated in Fig. 3. When I make the 

calculations, we will have to compensate for the actual width of the arms colliding with the ‘ground’ 

before the actual center, but for demonstrative purposes Fig. 3 is accurate.  

 So, what exactly do we need to measure? Well, HT is a measurement of total movement – where 

this movements starts is irrelevant, as long as it is at or above ground level. This will be explained later, 

but HT can be given as the sum of H1 and H2, which can both be independently calculated.  

Proof for Splitting H1 and H2 

 H1 is the height travelled by the point D from when AD is first parallel to the ground to when it 

reaches the maximum height possible. H2 is the distance travelled from the ground to parallel. Before I 

start calculating for H1 and H2, I think it’s important to establish why adding H1 and H2 results total 

height, even if H2 doesn’t necessarily touch the ground.  

Figure 3 



Proving HT = H1 + H2 

 The nature of a 4-bar is that the two bars are parallel, and our total height is going to be 

measured from any point on CD – for the sake of argument, we could take point C and point D, and the 

midpoint. C and D will both travel across the same arc – the angle between those arms and the horizon 

will always be the exact same. This means that the arc made by C and D both have the same angle, 

radius, and thus same length. This length can then be split into a horizontal and vertical component, 

giving the total vertical displacement.   

 I have already established that any two parallel arms with the same length will travel the same 

vertical distance, and with that I can establish how any point on CD will travel the exact same distance 

vertically. Any point on CD is part of a line that not only passes through CD but also intersects AB. The 

segment of the line in between AB and CD would then not only be parallel to AD and BC, but also have 

the same length. As proven earlier, this means that whatever point this line intersects will travel the 

same distance as any other point on CD.  

 With that in mind, for X degrees, any point on CD should have travelled the same distance as 

any other. This means that the total motion is equal to the sum of all its parts. Hence taking the vertical 

movement of any point on CD throughout those ranges and adding them up gives the total vertical 

movement of the lift. H2 

Proving the Starting Position of H2 is irrelevant 

 In the end, I am attempting to determine the total movement that I can gain from the lift. If H2 

starts “on the ground”, then there is no issue in determining that the given HT is in fact the actual usable 

range we should expect from the lift. This becomes more confusing when H2 is limited by collisions 

between the arms. As I have previously stated the total motion upwards can be measured by any point 

on line CD as they will all travel the same distance upwards. Using this argument, we can extend CD until 



it intersects with the ground plane, and mark that point C’’. C’’ will travel the same distance as C, except 

it has started touching the ground, and is thus “total range of motion”.  

M1 and M2 

 The first step in identifying the total distance travelled by the towers is determining the 

maximum slope that each of the arms can reach or attain. Knowing the maximum slope allows us to 

calculate the angle ϑ or α, where ϑ is the angle between horizon and AD, and α is the angle between 

horizon and BC’. Knowing these angles, we can find the height travelled. With this height known, all we 

need to do is graph! 

Determining M1 

 When solving for M1, we set the line created by BC as y=mx, and thus the second line AD to be 

y=mx+b. From there, we know that one point on the second line must be (0,b), and thus BC has 

equation 0 = mx-y. From there, we can use the equations for distance between a point and a line to give 

the formula 1=b/rt(m^2+1), which can be re-arranged to m=rt(b^2-1).  

Determining M2 

 M2 is more difficult to determine, and involves  the creation of another triangle, and the 

introduction of another point. As the arms themselves have a thickness, we need to understand that this 

will collide with the ground before the actual “center”. With that in mind, we add a point “E”, which is 

the edge of the arm, whatever material that may be, with CE being half the width of the entire arm .  

 BCE then, forms a right triangle with hypotenuse BE. This triangle will remain constant 

throughout – as the points are relative to the tube stock itself. BE can be given from L and the width of 

the tube stock, giving it length 𝐵𝐸 =  √𝐿2 − 𝐶𝐸2 .  

 



Knowing this, we can write the equation: (𝑄 − 𝐵)2 + 𝐷2 = 𝐵𝐸2, where D is the horizontal 

distance to point E, Q is the total height, and B is the separation between centers. This can be re-

arranged to give 𝐷 = √𝐵𝐸2 − (𝑄 − 𝐵)2. Knowing that the slope is given by rise over run, we can 

calculate the slope for BE as m3, which we can use to find the slope of BC m2. Slope is rise over run, 

which means that 𝑚3 =
𝑄−𝐵

𝐷
=

𝑄−𝐵

√𝐵𝐸2−𝑄2+2𝑄𝐵−𝐵2
=

𝑄−𝐵

√𝐿2−𝐶𝐸2 −𝑄2+2𝑄𝐵−𝐵2
. 

I also need to be able to express m2 in terms of m3, which I decided to do by comparing angles. 

Allow the angle between horizon and BE to be 𝜔, and the angle EBC to be 𝛾. 𝛼 then, would be 𝜔 − 𝛾, 

this gives us an equation for m2 of: 

𝑚2 =
𝑚3−

𝐶𝐸

𝐿

1+
𝑚3𝐶𝐸

𝐿

, where m3 is 
𝑄−𝐵

√𝐿2−𝐶𝐸2 −𝑄2+2𝑄𝐵−𝐵2
. 

This can then be put into a system of equations with m1 to find the crossover point, a B value 

where the two slopes are equal. 

The Floating Case 

 Sometimes, there will be an instance where the linkage does not have enough range of motion 

to touch the ground. This however, does not affect us in any way – we are only using the slope m2 as a 

comparison tool to m1, not as an actual indicator for height (like m1). In order to understand why this 

doesn’t matter, it’s important to consider how we get m3, and how we use m3 and m2. 

 First, m2 and m1 are compared against each other in order to determine where the physical limit 

for the part is, that is, what the actual H2 should be. If m2 is greater than m1, then it suggests that the 

limit provided the ground is lower than the limited provided by the distance between the channels 

themselves, and thus H2 = H1. However, if m2 is less than m1, it suggests that the ground is the limit, not 

the distance between the c-channels.  



 Second, when m3 is calculated, it is done so by using the vertical distance, length of the arm, and 

supposed horizontal distance travelled. This means that as B approaches zero, the slope of the line will 

be steeper. At some point, the slope of m2 should equal to that of m1, which means that the arm is 

limited by both the ground and by the material thickness. Any steeper, and height will be limited by m1. 

As B continues to shift upwards, then the height is governed by m1. In fact – m2 continues to steepen, 

which leads us to take values for H2 based off m1, meaning that we don’t need to account for this 

difference. 

Final Calculations for Total Height 

 Finally, this leads us to calculations for total height. There are two scenarios, already outlined, 

one where m2>m1, and one where m2<m1.  

M2>M1 

 When m2>m1, then H2 = Q – B. This is because m2 is steeper than m1, meaning that the arms are 

going to be limited by their actual thickness, which means that our final height HT can be described as 

two times H1 (because they’re limited in the same way on each side), and thus by the equation: 

𝐻𝑇 = 2𝐿
√𝐵2 − 1

𝐵2
 

M2<M1 

 When m2< m1, then H2 = H1, and our final height HT can be described in the equation below: 

𝐻𝑇 = 𝐿
√𝐵2 − 1

𝐵2
+ 𝑄 − 𝐵 



Our Values 

 Finally, we can substitute our values for L, and Q into the two equations to create the following 

graph:  

 

Red being the graph for m2> m1, and blue being the graph for m2< m1. Obviously, we need to find the 

point where we switch from one graph to another – calculating the value of B where m2 = m1 gives us a 

B value of around 17, which makes sense according to the graph. This means that we should be looking 

at the red line, for maximum height. In our case, we can find the max of the equation 𝐻𝑇 = 36
√𝐵2−1

𝐵2  by 

finding where the derivative crosses 0. This gives us a point of (1.37,25.6). which suggests a maximum 

lift height of around 25”, with a vertical offset of around 1.4”. 

 


