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Change History
 

Significant drafts, major edits, and structural changes will be listed here along with the initials of 
the editor and date.

 
● PMC 02/17/12 - First major draft completed for Pueblo tournament.
● PMC 02/24/12 - Design changes from Pueblo tournament added.
● PMC 02/29/12 - Edits completed per feedback from R. Andrews.
● PMC 03/02/12 - Second major draft completed for Colorado State Championships.
● SEM 04/17/12-  Final draft completed for VEX Robotics World Championships- High 

School.
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1.0 Introduction
 

The Kent Denver Robotics Club participates in VEX competitions regularly as a 
challenge to improve our skills, and as an external measure of progress. We do this in 
accordance with our mission statement, “to learn about science, technology, engineering, and 
math through fun, innovative, and fulfilling team-oriented projects in robotics.” This year’s VEX 
Robotics competition, Gateway, is a game in which pairs of robots compete to place barrel and 
ball-shaped game objects into cylindrical goals of various heights.

 
This document details the process of designing the robot, including design alternatives, 

selection, and refinement. This is a working document and will continue to be expanded, 
updated, and revised throughout the design process.

 
Important Terms and Acronyms
 
BOM - Bill of Materials, an itemized list and price breakdown of the components used in 

building a system.
CVS - The Concurrent Versions System, a change management system.
SVN - Apache Subversion, a change management system maintained by the Apache 

Software Foundation.
AGMA - American Gear Manufacturers Association
COM - Center of Mass
COG - Center of Gravity
 

2.0 Applicable Documents
 

The following documents are important to the design process. They are used for 
background information, design research, and reference throughout the process. Numeric 
references refer to the corresponding document as defined in this section (i.e. “Document 
2.1.2”).

 
2.1 VEX Gateway Official Documents

2.1.1 VEX Gateway Game Description and Scoring
2.1.2 VEX Gateway Manual
2.1.3 VEX Gateway - Appendix A Field Drawings, Specifications & BOM
2.1.4 VEX Gateway - Appendix B Robot Skills Challenge
2.1.5 VEX Gateway - Appendix C Programming Skills Challenge
2.1.6 VEX Gateway - Appendix D Inspection Guidelines
2.1.7 VEX Gateway - Appendix E Awards
2.1.8 VEX Gateway - Inspection Checklist
2.1.9 VEX Gateway - Referee's Scoresheet

2.2 Kent Denver Robotics Documents
2.2.1 Requirements Document

2.3 Official VEX Inventor's Guide
2.4 Kent Denver Robotics 2011-2012 Design Notebook
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3.0 Assumptions and Dependencies
 

The following assumptions are made in the design of the robot and in all related 
documentation, unless otherwise stated.
 

3.1 Field
 

We assume the field on which the robot will perform is tournament-ready and complies 
fully with VEX rules (document 2.1.3.).
 

3.2 Parts
 

We assume all VEX parts and components perform as documented, within documented 
tolerances. References to component documentation are included as appropriate (document 
2.3). Some vex parts include dramatic tolerances (eg field goals can be 30" +/- 1"); we will not 
design to the dramatics of these tolerances.
 
4.0 Design Description
 

This section presents the design of the robot as a whole. First, in section 4.1, we broadly 
describe the robot and explain its breakdown into subsystems. Section 4.2 specifically 
describes the functions for which each subsystem serves the robot and cross-references the 
specifications of the requirements document (2.2.1). Finally, section 4.3 describes the design 
alternatives considered in the design process and documents our selection and refinement of 
the final design.
 

The team chose to adopt an iterative design-build-test process in which we develop and 
implement a design, then test and revise it iteratively with thorough documentation made along 
the way. Revisions were then incorporated into the working design and the process was 
repeated. Throughout this process, we aimed to continuously make incremental improvements 
to a functional robot. We began our design process by breaking the project into subsystems, 
identifying the basic items our robot must accomplish, and drafting our requirements document 
(2.2.1), which has been updated continuously throughout the design process. After identifying 
preliminary requirements, the team brainstormed potential approaches to the problems each 
subsystem posed and recorded the process of refinement in the current document. We then 
evaluated our design alternatives based on agreed-upon criteria and selected the most suitable 
option for each subsystem. Next, the team divided into groups to refine and implement the 
selected design for a particular subsystem. Groups worked closely with one another to 
understand the interactions between subsystems. The final stage of building was integration, in 
which the groups came together and worked to smooth interactions between subsystems and 
transform the robot into a single, cohesive unit. We then thoroughly tested the robot, noting its 
strengths and weaknesses as well as any newly presented issues. Carrying forward information 
gained in testing, we revised our design and repeated the cycle.
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The final design is centered around a conveyor belt like system for handling game 
objects, which is mounted to a four-bar mechanism. The geometry of the four-bar was carefully 
chosen as a compromise between forward reach and vertical lift, thus striking a compromise 
between scoring flexibility and avoidance of tipping.
 
4.1 Design Overview and System Description
 

For Gateway, we chose to pursue an aggressive tactic focused on scoring. Based on 
our previous experiences in tournament play and our interactions with other teams this 
competition season, we believe this to be the most effective strategy. Aside from the aggressive 
scoring robots, two significantly different designed bots appeared during the course of 
competition this year.  A wall bot is a robot designed to expand to great widths as a means of 
limiting opposing robots from leaving or entering the isolation zone.  Secondly, a "super-stacker" 
is a robot which gathers a large number of objects (generally in excess of 10) and places them 
on top of a goal.  These two options are outlandish, can be easily defeated and require 
excessive design work to create a non-repeatable and non-reliable robot.  Additionally, we 
reached the decision to build a aggressive scoring robot in accordance with the organizers’ 
stated position on offensive tactics being most appropriate, as explained in VEX rule G11 
(document 2.1.2).
 

For the purposes of design, the project has been divided into four subsystems: chassis 
and drivetrain, game object manipulation, sensors and code, and construction and rules. The 
following subsections describe the individual subsystems and their functions in more detail.
 
4.2 Functional Decomposition
 

The requirements traceability matrix, below, serves as a cross-reference to the 
requirements document (2.2.1). The functions of each subsystem are mapped to the 
corresponding requirements in the table below.
 

Requirements Traceability Matrix
 

Subsystem Function Requirement(s)

Chassis and Drivetrain Mount parts of robot 3.1.6 - 3.1.13

 Frame and structure 3.1.14 - 3.1.15

 Drive the robot 3.1.2 - 3.1.5

 Comply with rules 3.1.1

Game Object Manipulation Handle and score objects 3.2.1 - 3.2.7

Sensors and Code Control robot 3.3.3 - 3.3.4

 Autonomous period 3.3.1
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 Programming Skills 3.3.2

Construction and Rules Comply with rules 3.4.1

 Build with good practices 3.4.2

 
4.2.1 Chassis and Drivetrain

 
The robot’s chassis consists of the robot’s basic frame structure and serves as the 

superstructure of the robot, to which the other systems mount. It also provides a stable, rigid 
base, on which, per their designs, the other systems rely. This system requires weight, material, 
stress, center of mass, rigidity and dimensional considerations. 
 

The robot’s drivetrain consists of motors, wheels, shafts, and other minor components, 
which develop or transfer mechanical power in order to move the entire robot. Analyses 
necessary for the drivetrain include gear stress (AGMA), shaft stress, power and torque output, 
gear ratios, and wheel size.
 

4.2.2 Game Object Manipulation
 

The robot must be capable of picking up, handling, and depositing game objects in order 
to score. The game object manipulation system is responsible for this and is the focus of much 
of our design effort. This system must be capable of handling both barrel and ball style game 
objects and of scoring these objects in any of the goals on the field. Additional challenges this 
system must overcome are posed by the tendency of the ball style game objects to roll, playing 
in crowded spaces, and barrels falling onto their sides.

It is of note that the bot can score in the corner goals without utilizing the object 
manipulation arm, but rather by pushing objects.  This serves as a sort of redundant system and 
allows our robot to be a scoring threat even in the event of catastrophic arm failure or even 
simple, momentary current draw issues.
 

4.2.3 Sensors and Code
 

This subsystem consists of all the electronics on the robot, including the Cortex 
microcontroller, remote controls, sensors, and batteries. Additionally, this subsystem includes all 
code written to any other system components (the VEXnet joysticks and Cortex, in particular). 
Notably, this subsystem includes the autonomous period routine (including a Programming 
Skills Challenge routine) and the driver control scheme.  Code and sensors are used to aid the 
driver and mechanical systems alike. 
 

4.2.4 Construction and Rules
 

While not a physical part of the robot, this subsystem covers details of construction, 
compliance with rules, and best practices for the design of the robot. Since these details apply 
to the robot as a whole, we chose to handle them under a separate section, rather than 
integrating them into each subsystem.
 
4.3 Design Alternatives
 

7



This section presents each design alternative we considered in the process of designing 
the robot. We examined alternatives by subsystem, selecting the most suitable concept for each 
subsystem and refining it.
 

4.3.1 Chassis and Drivetrain
 

Chassis
 

The chassis is built primarily from wide C-channel steel and assembled in a “U” shape. 
We chose steel rather than aluminum for the enhanced stability offered by a heavier base.  
While vex does not specify materials or material properties, we assumed the steel was some 
form of basic carbon steel with an approximate density of 7.85 g/cm^2.  Similarly, we assumed 
the density of the aluminum used was 2.7 g/cm^2.   This dramatic difference in weight per unit 
volume in the chassis significantly helps to lower the robot's center of gravity.  Additionally, 
similar aluminum parts supplied by Vex represent significant capital investment which was an 
unnecessary undertaking for our team. The broad use of C-channel is a result of the 
advantages it possesses in terms of moment of inertia when compared to other Vex standard 
parts. We opted for the horseshoe shape over the simpler rectangle to allow for greater 
clearance in “straddling” a goal.  This shape also allowed us to mount both the microcontroller 
and batteries low and centered in our chassis, which further aids the COM and allows for simple 
microcontroller wiring. 
 

Drivetrain
 

Over the course of the competition season, we have found the drivetrain to be the 
primary factor in limiting the speed of the robot, and with each revision we have improved the 
drivetrain to increase the speed of the robot without sacrificing stability.
 

Four Wheels
 

Initially, we built a square drivetrain of four standard 4” wheels with each wheel driven 
independently by a single 3-wire motor through a 60 tooth high strength gear. Although it was 
very reliable and stable, we found this design to be too slow.
 

In the next revision, we re-geared to use a 72:60 combination of spur gears. The new 
gear ratio helped to speed up the robot. We moved away from high strength gears both 
because we found them to be unnecessarily bulky and because 72-tooth gears are not available 
in high strength. This revision was an improvement over the previous configuration, but the 
robot was still sluggish.
 
 

Bevel Gears and Omnidirectional Wheels
 

Our next revision consisted of two major changes. First, we replaced the four standard 
wheels with three 4” omnidirectional wheels, allowing the robot to slide sideways in addition to 
normal driving and turning. Second, in order to obtain more clearance inside the horseshoe 
shape of the chassis, we moved the motors to the top of the chassis, perpendicular to the axles. 
This perpendicular orientation necessitated the use of bevel gears to transfer power from the 
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motors to the axles.
 

While this was our most maneuverable design yet, it was much less stable and tended 
to fall over, especially while carrying game objects. Additionally, though it did not happen during 
the short time in which we competed with this design, we feared another robot could easily 
knock ours down. With these concerns in mind, we returned to a rectangular drivetrain.
 

Chain and Sprockets
 

This symmetrical design consists of three inline 4” wheels on each side of the chassis 
driven by two motors via sprocket and chain. The middle wheel on each side is a standard 
wheel, while those in the front and back positions are omnidirectional wheels. While the 
omnidirectional wheels provide additional maneuverability, the standard wheels provide some 
resistance to sideways pushing by another robot.
 

Our latest revision has been to move up to 4” wheels as a means to gain higher top 
speed. While a range of gearing was tested, a 1:1.5 gear ratio proved to be the most reliable in 
terms of heat and current issues. We also invested in high strength chain kit in order limit the 
stress present in the regular chain and sprocket kit.  

Vex publishes their plastics to be Delrin, a proprietary product produced by Dupont 
Chemical. Still, there are a variety of off the shelf versions of Delrin and even some custom 
versions. In considering the strength of the chain, we utilized the ultimate strength (the point at 
which the material will fracture and fail completely). There will certainly be a distribution of 
strengths as a natural result of the manufacturing process; we chose a conservative published 
value of 23 MPa. With an input torque of 27 in-lbs and a smallest cross sectional area of 0.0248 
in^2, this resulted in an applied stress of roughly 15 MPa and a safety factor of about 1.5. We 
find this to be inline with the aerospace industry standard. Because aerospace must maximize 
safety without inducing significant risk, we consider a good standard for robotics. This analysis 
has proven itself in testing. 
 

The purpose of all the chain stress analysis, as well as the gear ratio analysis was to 
provide us with an estimate of what parts we needed for the chain drive, as well as the 
knowledge of how fast our robot can travel for competition.
 
 

4.3.2 Game Object Manipulation
 

Much of our design effort went into the game object manipulation system because of its 
central importance in scoring. We initially considered five design alternatives for this subsystem 
and later revised and expanded them over the course of the year. This section addresses each 
of these alternatives and revisions.
 

Four-Bar Mechanism
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This design consists of a handling apparatus mounted on the chassis via a four-bar 
linkage. The four-bar mechanism is actuated by motors which apply torque to the rear end of 
the linkage, raising the apparatus and extending it forward. The handling apparatus itself is a 
steel “box” which stacks up to four game objects vertically, picking up and retaining game 
objects using intake rollers mounted at the bottom of the box.
 

Four-Bar with Intake Mechanism
 

This design is similar to the four-bar system described above, with an additional 
mechanism to aid in picking up game objects. It uses a mechanism on top of the conveyor belt 
to aid in feeding objects, as well as dispensing objects into goals.
 

Four-Bar with Sliding Extension
 

Another variant on the basic four-bar system described above, this alternative adds a 
sliding mechanism to the top of the box, extending the box vertically and allowing it to hold three 
more game objects.
 

Conveyor Platform
 

In this design, two supports extend vertically from the chassis and mount turntable 
bearings. The turntables mount a platform, and driving them pitches the platform, which is free 
to rotate continuously in either direction. The platform mounts a conveyor belt like mechanism to 
handle game objects.
 

Split Conveyor
 

Similar to the conveyor platform design above, with the major difference being that the 
platform is broken into two smaller, independent units.
 

Evaluation of Design Alternatives
 

.
 

 Four-Bar Four-Bar with 
Intake

Four-Bar with 
Extension

Conveyor 
Platform

Split 
Conveyor

Motors 7 7 5 10 3.5

Ease of 
implementation

8.5 7 5.5 9.5 3

Ease of scoring 7.5 7.5 7 8 7

Required 
sensing

9 9 7 9 6
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Effectiveness 
of manipulating 
objects

8 9 9 7 8

Scoring ability 
(which goals?)

9 9.5 10 1 10

Weight 6 5.5 5 6.5 3

Ease of 
programming

7 7 6.5 7 5

Total 62 61.5 55 58 45.5
 
 

Six-Bar Mechanism
 

During our first two competitions (Thompson Robotics Expo and Thunder Ridge), we 
found that the four-bar mechanism was unable to lift the box apparatus high enough to score on 
the 30” goals and that it was not possible to adjust the geometry of the four-bar linkage to allow 
for a sufficient vertical range while remaining within the 18” initial size limit (requirement 3.4.1). 
In order to achieve both of these opposed objectives, we opted for a six-bar linkage. Although 
this does add some weight, we judged the ability to score on the 30” goals to be worth the trade.
 

Four-Bar Conveyor
 

At the Thunder Ridge competition, the box apparatus became tangled in a goal, 
rendering the robot unable to move for the duration of the round. We believed this problem was 
inherent in the design and likely to recur and therefore, reevaluated our design options.
 

This design retains the four-bar mechanism but replaces the “box” apparatus with a 
conveyor belt consisting of two sets of tank treads.
 

Four-Bar Conveyor with Sliding Extension
 

This adaptation of the four-bar conveyor design adds a rail-mounted extension to the 
back of the conveyor system which allows it to store two additional game objects.
 

Four-Bar  Conveyor with “Shelf”
 

Similar to the sliding extension described above, this adaptation of the four-bar conveyor 
design adds a hinged extension to the back of the conveyor system which allows it to store two 
additional game objects.
 

4.3.3 Sensors and Code
 

Sensors
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The robot employs two quadrature shaft encoders, five line-tracking sensors, and two  

potentiometers. The two shaft encoders are incorporated into the drivetrain and allow the robot 
to drive and turn precise amounts, by counting the amount of ticks the encoders; additionally, 
the encoders enable the robot to maintain a very straight line while driving forwards or 
backwards, which is particularly valuable in autonomous operation. We use five line-tracking 
sensors during autonomous operation to make use of the lines on the field to determine position 
and guide movement. We operate 

Sensors are the basis for autonomous operation, providing the routine with the 
information necessary for decision making. However, the sensors are also of use during driver 
control.
 

Driver Control Scheme
 

The robot is controlled by a single driver using a VEXnet joystick. We elected to use a 
single driver rather than two because we do not believe the operation of the robot is complex 
enough to merit the additional difficulty which comes with a second driver. We also implemented 
multitasking with our drive code, allowing us to make different tasks for the drive, the arm, and 
our conveyor. 
 

We apply high-pass filtering to the analog inputs from the joystick in order to address the 
problem of the VEXnet joysticks’ analog sticks recentering imperfectly (failing to zero) when 
released.
 

Autonomous Routine and Programming Skills Challenge
 

During autonomous operation, the robot employs dead reckoning - a navigational 
technique in which the current location and heading are determined based on information about 
movement relative to a previous known location.
 

Though we implement autonomous routines for both interaction and isolation, we prefer 
to run in isolation. The interaction zone routine scores X points by Y.
 

In the Programming Skills Challenge (document 2.1.5), we do X.
 

For Programming Skills, our routine is based around line follow and dead reckoning 
code. Our robot will use the navigate method in order to travel quickly between waypoints, and 
will use line follow in order to align the robot to the center of a goal. The navigate method uses 
previously stored robot positions as well as basic trigonometry to travel in an orthogonal path 
toward the next specified location, and uses our quadrature encoders to check that the robot is 
traveling the specified path, and update the robot’s position in the matrix. The line follow works 
by using a basic line follow routine with three sensors at the front of the robot, that adjusts 
the robots path should it stop following, as well as using two sensors in the back to check for 
intersections. Whenever the robot detects an intersection, it will return a certain case based on 
its position from jumpers, and have the robot either continue, turn left, or turn right.
 

Current Limiting

12



 
In order to mitigate the current draw issues, we made a separate task that constantly 

runs throughout the competition. The task makes a new motor array that constantly checks the 
acceleration of each motor on the robot. This ensures that the robot doesn’t provide too much 
current to each motor within a short duration. This task also stops current flow when the robot 
motors are stalled.
 

Version Control
 

The code is managed using Git, which provides version control, change management, 
and project history. Git is widely used and accepted in professional software development, and 
projects such as the Linux kernel and the GNOME project employ Git as their sole system of 
revision control. In choosing a version control system, we identified three major options: CVS, 
SVN, and Git. We selected Git primarily because of its distributed nature, as we do not currently 
have a server available to us for development and the team works independently on different 
parts of the code. Git addresses both of these problems by allowing each client to own a 
complete project repository locally. Neither CVS nor SVN employs a similar architecture.
 
5.0 Detailed Design Description
 
5.1 Chassis and Drivetrain
 

Drivetrain
 

The drivetrain consists of two symmetrical “pods.” Each pod is built of three inline 
wheels, driven by two high-power motors via chain and sprocket.
 

● Drivetrain
○ Sprocket and chain
○ Wheels

■ 4” wheels, four omni, four regular
○ Gear ratio on sprockets (1.5:1)
○ Two-wire motors
○ Shaft encoders geared down
○ Chain analysis

■ High strength chain between motors
■ Triple chain on wheels

○ Redundancy
● Chassis

○ Steel
 
5.2 Game Object Manipulation
 

● Four-bar
○ AGMA analysis on arm-lifting gears
○ Reliability analysis on four-bar height
○ Four-bar analysis: VLA, kinetics

● Conveyor intake
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5.3 Sensors and Code
 

This subsystem is centered around the Cortex microcontroller and is responsible for 
controlling the robot during both remote-operated and autonomous operation.
 

5.3.1 Sensors
 

The robot uses sensors primarily in autonomous operation, during which they 
provide the information which enables dead reckoning (see 5.3.2).
 

Ultrasonic Sensors
 

The robot mounts three ultrasonic rangefinders.
 

Line-Following Sensors
 

We employ five line-following sensors in autonomous operation. Three of 
the sensors are mounted in a group at the front of the robot, spaced closely, while the remaining 
two are mounted at the center of the side members of the chassis.
 

Quadrature Shaft Encoders
 

Two quadrature shaft encoders are integrated into the drivetrain. They 
serve to measure the rotation of the components in the drivetrain, allowing the robot to move 
and turn precise amounts.
 

The shaft encoders are driven by a 10-tooth sprocket, putting them at a ratio of 
1 : 2.4 to the wheels. This ratio increases the effective resolution of the shaft encoders from 90 
to 216 ticks per revolution of the wheels, as one full turn of the wheels results in 2.4 turns of the 
shaft encoder.
 

5.3.2 Autonomous Operation
 
 
 

Dead Reckoning
 

We employ dead reckoning in autonomous operation. Dead reckoning is a navigational 
technique which relies on always knowing one’s current location. We implement the technique 
by continuously keeping track of the robot’s movement and, thus, its position relative to its 
starting point. Based on a known starting point, this relative location is translated into a location 
known in absolute space.
 

Autonomous Period
 

We implement an autonomous period routine for both red and blue alliances in both the 
isolation and interaction zones.
 

Programming Skills Challenge
We utilize line follow sensors as well as dead reckoning to complete our programming 

skills routine that is capable of scoring over 20 points
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5.3.3 Driver Control

 
The robot is controlled by a single driver, although the rules permit two. We made this 

choice because we do not feel the operation of the robot is sufficiently complicated to warrant 
the additional time investment of practicing with two drivers.
 

5.3.4 Electrical Considerations
 

The Cortex microcontroller incorporates overcurrent protection into the motor outputs. 
Two separate time-dependent circuit breakers each protect half of the motors - motor ports 1-5 
share one circuit and motor ports 6-10 share the other. Additionally, the motor outputs of the 
power expander module are protected by a third overcurrent device, identical to those of the 
microcontroller.
 

● Cortex diagram, showing motor wiring relative to circuit breakers
 
5.4 Construction and Rules
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