
January 5, 2019 - Pascal Chesnais - Walsh Middle School

WalshBots
Autonomous Feature Selector

Introduction
With V5 Robot Brain you can load up to eight programs, which is nice as you can load different
programs for different scenarios, such as which alliance are you on and which starting tiles.
While this is good for new teams getting started, you have to maintain up to eight different
programs each time something about the robot changes. James Pearman, VP of Engineering
at RobotMatters, posted an example program on vexforum.com for using the V5 Robot Brain to
select different autonomous routines by pressing square buttons on the V5 Robot Brain. In his
example, he used 8 buttons to select which routine would be followed. The advantage is that
you can maintain all 8 routines in one single program. The downside is you are limited to only
one routine at a time. At Walsh, we modified Mr. Pearman’s code such that you could control
robot features/capabilities, for example, parking, shooting preload, as well as, control which
position you are on the field by selecting the color alliance and starting tile (near or far from
flags). This opens the possibility to have have many more than eight routines (in fact there are
256 possibilities with 8 on or off buttons). From the driver perspective, it is easy to understand,
you are setting what capabilities you wish to enable depending on your alliance strategy.

Screen interface

There are eight positions on the screen. In the 9791 competition template we have four defined:

● Ally - set which alliance you are on Red or Blue.
● Start - defines the starting tile Black is near the net/flags and white is the far tile.

January 5, 2019 - Pascal Chesnais - Walsh Middle School

● Park - determine if the robot will be parking or not.
● Shoot - determines if the preload will be shot or not.

Using button results in the program
Once the buttons are selected, they set variables in the program to true or false. Then you can
test those variables in your autonomous routine to adapt to your match needs.

You first declare and initialize the variables at the beginning of the autonomous routine:

void autonomous(void) {

 /* initialize capabilities from buttons */

 bool allianceBlue = buttons[0].state;

 bool startTileFar = buttons[1].state;

 bool doPark = buttons[2].state;

 bool shootPreload = buttons[3].state;

 /* lower flag bumping code - only if near flag start tile */

 if(!startTileFar){ // Starting tile nearest to the

flags/net

 // STEP 1

 // if preload needs to be shot in autonomous, do it now

 if(shootPreload){

 shootPuncher();

 Brain.Screen.printAt(60, 125, "Shooting Preload

");

 if(allianceBlue){

 driveTurnRightDegrees(7); // need to have robot

facing more to the left

 }

 }

 // STEP 2

 // drive into first low flag

 driveDistance(50.0);

…..

January 5, 2019 - Pascal Chesnais - Walsh Middle School

Setting up buttons in your program

Button support definition
Global definition for button structure, this will need to be at the top of your program.
typedef struct _button {

 int xpos;

 int ypos;

 int width;

 int height;

 bool state;

 vex::color offColor;

 vex::color onColor;

 const char *label;

} button;

Specific button definition for your needs
// Button array definitions for each software button. The purpose of

each button data structure

// is defined above. The array size can be extended, so you can have

as many buttons as you

// wish as long as it fits.

button buttons[] = {

 { 30, 30, 60, 60, false, 0xE00000, 0x0000E0, "Ally" },

 { 150, 30, 60, 60, false, 0x303030, 0xD0D0D0, "Start" },

 { 270, 30, 60, 60, false, 0x303030, 0xF700FF, "Park" },

 { 390, 30, 60, 60, false, 0x303030, 0xDDDD00, "Shoot" },

 { 30, 150, 60, 60, false, 0x404040, 0xC0C0C0, "4-" },

 { 150, 150, 60, 60, false, 0x404040, 0xC0C0C0, "5-" },

 { 270, 150, 60, 60, false, 0x404040, 0xC0C0C0, "6-" },

 { 390, 150, 60, 60, false, 0x404040, 0xC0C0C0, "7-" }

};

As you can see we set up our Ally button to have the color RED when false and BLUE when
true. All buttons have an off and on color to allow the driver to have visual confirmation of the
state of the selection.

January 5, 2019 - Pascal Chesnais - Walsh Middle School

Final thoughts
From the driver’s perspective this is a neat way to think about autonomous selection. There is
the drawback that V5 Robot Brain screen may be difficult to reach on the field.

Many thanks to James Pearman for getting the button example on the forum. He tirelessly
contributes useful know how to the community. We are glad to give back.

The example code 9791-button-template.vex also has some drive abstractions which helped our
teams program their autonomous. Probably some bugs - let us know if there are improvements
to be made.

