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1. Introduction: 

 

The Gear Mashers’ holonomic drive consists of four “VEX 2-Wire Motor 393”  

[ref 1] gear motors, each equipped with a “4inch Omni-Directional Wheel” [ref 2] and an 

“Integrated Encoder Module” [ref 3]. The gear motors are mounted at the extreme 

corners of the robot chassis with the Omni-wheels at a 45 degree angle.  

The source code is configured to assign the positive wheel direction to rotate in the 

motor in the clockwise direction. We also ensure encoder variable is mapped with the 

positive direction as clockwise.  

The program has a main loop, which is regulated by a real time clock to twenty five 

milliseconds per loop. The encoders are read and cleared on each loop. This differential 

value is the amount the corresponding wheel rotates during one loop of the program. We 

represent this number with the variables “s0”, “s1”, “s2”, and “s3” representing wheel-0, 

wheel-1, wheel-2, wheel-3 respectively. 
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2. Angle Tracking:(θ)  

(Please examine the links in Reference section. This stuff will make better sense) 

 

Using these values captured from the encoders, we can calculate the change in 

rotation of the robot chassis during one loop of the program (25mS). The angle can be 

tracked, in the absence of wheel slip, by the difference in motion between “s0” and “s2”, 

or the difference between “s1” and “s3”. With algebra and the arc length formula [ref 4] , 

we determine a formula for the angle of the robot chassis from the motion of opposing 

wheels (s0 and s2, or s1 and s3). See formula (1) below.  

Examining the arc length formula, we find there are three variables. The variables are, 

theta for Angle (θ), “r” for radius (r0, r1, r2, r3), and “s” for arc length (s0, s1, s2, s3). The 

function as it stands appears to be non-linear due to the product of the variables “1/r” and 

“s”. ([ref 5] Linearity is a very important concept in mathematics. Linear problems are 

typically solvable problems.) In the diagram below, the system is shown in several 

conditions with different values for “r0” and “r2”. Notice how “r0” decreases by the same 

quantity that “r2” increases. The length between the wheels “l ” is a constant with l=r0+r2. 

Using algebra, we use substitution [ref 6] to replace “r0” and “r2” with their equivalent 

from the arc length formula (l=s0/θ + s2/θ). With another algebraic operation we 

“factor”[ref 7] out “1/θ”. Next we multiply both sides of the equation by “θ” and “1/l ”. 

Now, since “1/l ” is a constant, formula (1) below is a linear formula for angle “θ” in 

terms of two arc lengths for opposite wheels “s0” and “s2”. 
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Our robot has an encoder on each wheel, so we combine formula (1) for wheels S0 

and S2, with the same formula for wheels S1 and S3 giving us formula (2) below. The 

effect of this is an average of the measurement of the two wheel pairs. Finally, since the 

robot is not a true square and there may be imperfection in the placement of the wheels, it 

is most practical to determine a calibration constant “K” experimentally. Formula (2) 

below tracks the angle of the robot. 
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3. Position Tracking:( FS


) 

 

To track the movement of the robot on the floor, we need to introduce several 

Cartesian coordinate systems [ref 8]. This is a means to keep the formulas of motion 

simple. It is easy to translate the resulting vectors from one coordinate system to another 

with linear transforms [ref 9] and vector arithmetic [ref 10]. These coordinate systems 

rotate with the robot. That is, as “θ” from formula (2) above changes, there is no effect on 

the coordinate systems “R0”, “R1”, “R2”, “R3”, “RW0”, “RW1”, “RW2”, or “RW3”. 

We use the symbols “R0”, “R1”, “R2”, and “R3” to indicate the robot chassis 

coordinate system with +Y in the direction of the claw. “R0”, “R1”, “R2”, and “R3” each 

have their origin at the center of their respective wheel.  

In addition to the “Rwheel#” coordinate systems that align with the robot chassis, each 

wheel has a coordinate system “RWwheel#”. Each “RWwheel#” has (0,0) at the center of 

where the wheel touches the floor and +Y perpendicular to the wheel and away from the 

robot chassis. These coordinate systems are shown on the diagram below. 
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We use vectors to track the relative motion of the wheels. The vectors used are 

column vectors. The top element is the X value or the vector and the bottom element is 

the Y value. Column vectors are preferred because they are compatible with matrix 

multiplication [ref 11]. The Delta “Δ” in the formulas below represents “change in”, and 

is used to indicate relative motion of the wheel during the 25 millisecond (mS) program 

loop. A millisecond is 1/1000 of a second. 

Let’s examine the motion vector for wheel 1. Omni-wheels are able to drive in the 

wheels direction or rotation but roll passively in the direction perpendicular to rotation. 

The X axis in “RW1” below is aligned with “Δs1” but the opposite direction. The Y axis 

is in the passive direction of wheel 1 so Y is not dependent on “Δs1”. However, Y is 

dependent on “Δs0” and “Δs2”. By inspection “Δs0” is in the direction of Y and “Δs2” is 

in the opposite direction of Y. The X component motion vector for wheel 1 “Δs1RW1” is  

“-Δs1” and Y of “Δs1RW1” is the average of “-Δs2” and “Δs0”. See formula (3) below and 

similarly formulas (4), (5) and (6) below. 
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 Now that we can find vectors for the motion of each wheel during the 25mS 

program loop we need to rotate these vectors so they become the vector of motion of their 

respective corner of the robot chassis. Formula (7) below is a rotation linear transform. It 

is used to rotate a vector about the origin. Knowing the angle between coordinate 

systems, this rotation is used to find a given vector’s representation in the rotated system. 

In the diagrams below, formula (7) is shown transforming a vector from “RW1” to “R1”. 

For the transform from “RW0” to “R0” the angle is -45º, from “RW1” to “R1” the angle is 

45º, from “RW2” to “R2” the angle is 135º, and from “RW3” to “R3” the angle is -135º. 

See formulas (8),(9),(10), and (11) 

below and note that we use matrix 

multiplication [ref 11] in these 

formulas. 
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Now that the motion vectors are all aligned in the same direction lets convert 

them to motion vectors on the floor’s coordinate system “F”. We use “F0”, “F1”, “F2”, 

and “F3” to indicate the floor’s coordinate system for each associated corner of the robot. 

The only difference between these is the location of the origin. Since we are just finding 

relative motion vectors we just pretend that “R1” and “F1” coordinate systems share the 

same origin. Formula (12) below should be familiar. TRF is a rotation transformation 

matrix that rotates the given motion vector by the latest value of the robot’s angle on the 

floor “θ”. (12) TRF transforms the vector from coordinate system R to coordinate system 

F. (13) TFR transforms the vector from coordinate system F back to coordinate system R. 

This rotation transformation matrix is used in Formulas (14), (15), (16), and (17) finding 

the relative motion each corner moved in the associated 25mS program loop.  
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The delta vectors obtained from (14),(15),(16), and (17) above are used to find the 

absolute position on the floor. The absolute position is found for a given loop of the 

program by summing together [ref 12, 13] all of the delta values known until the given 

loop. See formulas (18),(19),(20), and (21) below. Note that the (i) indicates the loop 

number of the its delta vector like a function [ref 13] and is not a product term. The 

resulting absolute position vectors, for each wheel, indicate the position on the floor of 

the wheel since the first loop. Finally in equation (22) below, the average position of the 

four absolute position vectors for the wheels is taken. This is the absolute position of the 

center of the robot chassis on the floor.   
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Basic Control: 

 The motors are gear motors that appear to reach equilibrium quickly for a given 

applied power. We have not bothered to implement a PID control for the wheels. We 

assume applied power equals speed set point. To prevent wheel slip we have limited the 

slew rate at which we apply the power to the wheels. Preventing wheel slip greatly 

improves position tracking. 

 The symbol omega “ω” is used for rotational rate it applied directly to all wheel 

motors. In formulas (23),(24),(25), and (26) below, “p” represents the power applied to 

the wheel indicate by its subscript. The “ e


” symbol represents a “unit vector” in the 

direction of the motor drive indicated by its subscript. “ v


” indicates the desired velocity 

vector of the robot.  

 We take the “dot product” [ref 14] of the two vectors e


and v


. Since e


 is a unit 

vector, its length is 1 the resulting value will be the amount of v


 in the direction of e


.  
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Motor Scaling: 

 

Now, since the maximum power that can be applied to the motor is 127, p must be 

scaled proportionally to each other.  
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