

main ()
Inside the Main function for the program one typicallys sets up the infinite loop – while(1)

Check to see if driver wants to invoke autonomous – review the toggle autonomous function later in this document
which sets the global variable useAuton to a 0 or a 1.

The condintional test if (useAuton) ensures the robot is only being controlled either by the autonomous routine or the
driver i.e. arcade2 in this case. Any Arm / Claw manipulator code would need to followa similar pattern. In this simple
example the only motors are the drive motors

This program also relies on four user defined functions (or five if you include the ability to use vex sensors which operate
differently than Best sensors These will be described below.

Main is dependent upon the global variable useAuton which is an integer and would be set to a 0 for manual drive or a 1
for autonomous or line following mode

Code image for main follows:

toggleAutonomous ()
This function changes the global variable useAuton from zero to one , or one to zero each time button5Up is pressed on
the controller. The button must be released and pressed again to toggle the global variable. This is enabled by the
following logic and use of another global variable called button5UpOneShot which is also an integer and set to either a
one or zero.

This toggle logic can be very useful if the programmer would like to enable and disable capability with just one button on
the controller.

Follow_Line()

This is basically the same function as provided in the example that comes with easy C however the global variable
useAuton has been added to each of the while loop tests to allow for user to break out of the loop manually if needed.

Follow Line calls the function velControl to do one of the following:

Drive Straight;

Turn Right;

Turn Left;

Stop;

Note the picture was pasted in two parts so there is an unavoidable break in the main function line which should be
ignored.

velControl ()
VelControl, or Velocity Control, is the main motive output for the line following routine

There are local variables for leftSpeed,rightSpeed and stop which are for tuning the max speed of the drive motors in
line follow mode

The ‘reset’ of lost at the end is part of the overall line following example logic. I did not design or test with it in this
location. It should be considered in understanding the overall effectiveness of this example.

Get_Sensor_Data ()
Get sensor data is more complicated that would be required for use in a BEST competition as it is currently set up to use
either BEST sensors of VEX Sensors depending on the value of the variable sensorType. It was coded this way as the
author does not have access to the BEST sensors, however wanted to set up the logic in a fashion that would allow VEX
sensors to mimic a BEST sensor.

For BEST one would only need this part without the ‘if’

For completeness the remainder of the code is included below.

This module uses a local variable ‘sensorType’ set to and nonzero positive value for Best sensors and 0 for Vex Sensors

The other local variables are for tuning the detection threshold of the VEX sensors The example had them set to 200 but
they would likely need to be adjusted for your specific VEX sensor configuration

Note for the Best competition students will still need to provide a mechanism to stop ‘autonomous’ one the destination
is reached, and to manipulate a game piece during that phase as well.

https://www.youtube.com/watch?v=x4iBxsRjGYs&feature=youtu.be

